Epistemic Uncertainty Quantification in Scientific Models

نویسندگان

  • Xiaoxiao Chen
  • Dongbin Xiu
  • Suchuan Dong
  • Greg Buzzard
  • Guang Lin
چکیده

Chen, Xiaoxiao Ph.D., Purdue University, December 2014. Epistemic Uncertainty Quantification in Scientific Models. Major Professor: Dongbin Xiu. In the field of uncertainty quantification (UQ), epistemic uncertainty often refers to the kind of uncertainty whose complete probabilistic description is not available, largely due to our lack of knowledge about the uncertainty. Quantification of the impacts of epistemic uncertainty is naturally difficult, because most of the existing stochastic tools rely on the specification of the probability distributions and thus do not readily apply to epistemic uncertainty. And there have been few studies and methods to deal with epistemic uncertainty. A recent work can be found in [J. Jakeman, M. Eldred, D. Xiu, Numerical approach for quantification of epistemic uncertainty, J. Comput. Phys. 229 (2010) 46484663], where a framework for numerical treatment of epistemic uncertainty was proposed. In this paper, firstly, we present a new method, similar to that of Jakeman et al. but significantly extending its capabilities. Most notably, the new method (1) does not require the encapsulation problem to be in a bounded domain such as a hypercube; (2) does not require the solution of the encapsulation problem to converge point-wise. In the current formulation, the encapsulation problem could reside in an unbounded domain, and more importantly, its numerical approximation could be sought in L norm. These features thus make the new approach more flexible and amicable to practical implementation. Both the mathematical framework and numerical analysis are presented to demonstrate the effectiveness of the new approach. And then, we apply this methods to work with one of the more restrictive uncertainty models, i.e., the fuzzy logic, where the p-distance, the weighted expected value and variance are defined to assess the accuracy of the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness-based portfolio optimization under epistemic uncertainty

In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...

متن کامل

Efficient Algorithms for Mixed Aleatory-Epistemic Uncertainty Quantification with Application to Radiation-Hardened Electronics Part I: Algorithms and Benchmark Results

This report documents the results of an FY09 ASC V&V Methods level 2 milestone demonstrating new algorithmic capabilities for mixed aleatory-epistemic uncertainty quantification. Through the combination of stochastic expansions for computing aleatory statistics and interval optimization for computing epistemic bounds, mixed uncertainty analysis studies are shown to be more accurate and efficien...

متن کامل

Bayesian Framework for Multidisciplinary Uncertainty Quantification and Optimization

This paper presents a comprehensive methodology that combines uncertainty quantification, propagation and robustness-based design optimization using a Bayesian framework. Two types of epistemic uncertainty regarding model inputs/parameters are emphasized: (1) uncertainty modeled as p-box, and (2) uncertainty modeled as interval data. A Bayesian approach is used to calibrate the uncertainty mode...

متن کامل

A Mixed Uncertainty Quantification Approach Using Evidence Theory and Stochastic Expansions

Uncertainty quantification (UQ) is the process of quantitative characterization and propagation of input uncertainties to the response measure of interest in experimental and computational models. The input uncertainties in computational models can be either aleatory, i.e., irreducible inherent variations, or epistemic, i.e., reducible variability which arises from lack of knowledge. Previously...

متن کامل

Numerical approach for quantification of epistemic uncertainty

In the field of uncertainty quantification, uncertainty in the governing equations may assume two forms: aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty can be characterised by known probability distributions whilst epistemic uncertainty arises from a lack of knowledge of probabilistic information. While extensive research efforts have been devoted to the numerical treatmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016